Accueilretour

PC - colles de mathématiques 2024-2025

colle n°5 - semaine n°42

Révision

Suites et séries de fonctions

L'objectif de ce chapitre est de définir les modes usuels de convergence d'une suite ou d'une série de fonctions et d’étudier le
transfert à la limite, à la somme des propriétés des fonctions.
Les fonctions sont définies sur un intervalle I de
et à valeurs dans ou .

Modes de convergence d'une suite ou d'une série de fonctions [reprise]

Convergence simple, convergence uniforme d'une suite de fonctions.
La convergence uniforme entraîne la convergence simple.

Norme de la convergence uniforme sur l'espace des fonctions bornées à valeurs dans ou .

Convergence simple, convergence uniforme, convergence normale d'une série de fonctions.
Utilisation d’une majoration uniforme de |fn(x)| pour établir la convergence normale de ∑fn.

La convergence normale entraîne la convergence uniforme.
La convergence normale entraîne la convergence absolue en tout point.

Régularité de la limite d'une suite de fonctions

Continuité de la limite d'une suite de fonctions : Si (fn) converge uniformément vers f sur I et si, pour tout n, fn est continue sur I, alors f est continue sur I.
En pratique, on vérifie la convergence uniforme sur tout segment, ou sur d’autres intervalles adaptés à la situation.

Intégration sur un segment de la limite d’une suite de fonctions :
si une suite (fn) de fonctions continues converge uniformément vers f sur [a, b] alors

ab limn→+∞fn(t)dt = limn→+∞ab fn(t)dt.

Dérivabilité de la limite d'une suite de fonctions :
si (fn) est une suite de fonctions de classe 𝒞1 sur I qui converge simplement sur I vers f et telle que la suite (f'n) converge uniformément sur I vers g, alors f est de classe 𝒞1 sur I et f'=g.
En pratique, on vérifie la convergence uniforme sur tout segment, ou sur d’autres intervalles adaptés à la situation.

Extension aux fonctions de classe 𝒞k, sous l'hypothèse de convergence uniforme de (fn(k)) et de convergence simple des (fn(j)) pour 0 ≤ j < k.

Régularité de la somme d'une série de fonctions

Continuité de la somme d’une série de fonctions : si une série ∑fn de fonctions continues sur I converge uniformément sur I, alors sa somme est continue sur I.
En pratique, on vérifie la convergence uniforme sur tout segment, ou sur d’autres intervalles adaptés à la situation.

Théorème de la double limite : si une série ∑fn de fonctions définies sur I converge uniformément sur I et si, pour tout n, fn admet une limite n en a borne de I (éventuellement infinie), alors la série ∑ converge, la somme de la série admet une limite en a et :

n=0fn(xx→an=0n.

La démonstration est hors programme.

Intégration de la somme d'une série de fonctions :
si une série de fonctions continues converge uniformément sur [a, b], alors la série des intégrales est convergente et :

abn=0+∞fn(t)dt = ∑n=0+∞abfn(t)dt.

Dérivation de la somme d'une série de fonctions :
si une série ∑fn de fonctions de classe 𝒞1 converge simplement sur un intervalle I et si la série ∑f'n converge uniformément sur I, alors la somme ∑n=0+∞fn est de classe 𝒞1 sur I et sa dérivée est ∑n=0+∞f'n.
En pratique, on vérifie la convergence uniforme sur tout segment ou sur d’autres intervalles adaptés à la situation.

Extension à la classe 𝒞k sous hypothèse similaire à celle décrite dans le cas des suites de fonctions.

À suivre (semaines prochaines) :